
Zeshawn Shaheen

ESGF F2F 2017

Thursday, December 7, 2017

Introduction

• Framework for managing/modularizing tasks related to diagnostics

• Handle using input

• Computing metrics

• Provenance capture

• Running diags in parallel (multi-processing, distributedly)

• Basic structure but allows for independence, no dependencies

• Optional support for commonly used tasks

• Graphing with VCS

• Viewing results on a webpage created with the CDP viewer API

• Metric calculations with CDAT (GenUtil, CdUtil)

Problems Solved

• Scientific code is complex, so has a short life

• Scientists don’t have the urgency to implement good software engineering
principles
• Should focus domain-specific work, not viewing results, parallelism, etc.

• Provides a framework for diagnostics to be shared

• Diagnostic packages built with CDP have similar architecture, easy for
developers to transition across projects

Design and Architecture

Parameters

Cleans and
handles user

input

Parser

Command line
parser to create

Parameters

Inputs

Metrics

Cachable

Driver
IO

IO with JSONs

User Code

Provenance

Metadata to
recreate a run

Viewer

View images,
data files, etc

Results

Run

Serial, multi-processing,
distributedly

Design and Architecture

• Parameters object:
• Used as input, created from a Python script

• Encapsulates sanitization of user input

• Parser object: creates Parameters object from the command line
• Takes raw file: diags_package.py -p myparams.py

• Individual parameters are command line arguments, ex: diags_package.py -p
myparams.py –-seasons ANN

• Example parameters script:
variables = [‘T’, ‘PRECT’]

regions = [‘global’]

seasons = [‘ANN’, ‘DJF’]

Design and Architecture

• Metrics:

• Cachable, not in by default in Python 2

• Single interface to work with Fortran, C, Python code

• ESGF CWT-based metrics as well

• IO:

• Handles input/output with JSONs

• Main script (driver), designed for a single run

• Input: Parameters object

• Do calculations using metrics, save info with IO, etc

• Results: View results with CDP viewer, provenance capture through CDP provenance.

Design and Architecture

• Run:

• Run a driver in serial, or parallel using multi-processing or
with distributed computing

• Data parallelism with different parameters

• Viewer:

• Easily create an interactive, sharable HTML page

• In Python, no HTML/Javascript

• Provenance:

• Create a backup of the Parameters object

• Log of output, utils for data validation (hashing, etc)

Design and Architecture

• Only 14 lines of code

Design and Architecture

• Data parallelism

• User can submit multiple runs:

• diags_package.py -p myparams1.py myparams2.py

• diags_package.py -p myparams.cfg

• Compose parameters:

• diags_package.py -p myparams.py –d myparams.cfg

• Transparency:

• Each run is a job

• Same interface to run in serial, parallel, parallel w/ distributed

• Users don’t need to tailor input to match the type of run

• CDP CLI

• Tool for viewing status of, restarting, killing distributed jobs

[diags1]
vars = ["T"]
seasons = ["ANN", "SON"]

[diags2]
vars = ["PRECT"]
seasons = ["JJA"]

Design and Architecture
• E3SM Diagnostics Package performance, w/ 1330 individual diagnostics

• Good strong and weak scaling

0

5

10

15

20

25

30

35

40

45

1 2 4 8 16 32 64 128

Ti
m
e	
(s
ec
)

Number	 of	Processes

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64 128

Sp
ee
du
p

Number	 of	Processes

Uses

• PCMDI Metrics Package:
• Completed January 2017

• Need to add new features

• E3SM Diagnostics Package
• In progress, 7 plot sets done

• Replacement for AMWG Diagnostics

• ARM Diagnostics

Future Work

• Cloud computing
• Containerize software, deploy on PaaS (AWS, Google Cloud Platform, etc)

• Library of metrics, but would introduce more dependencies
• Standardize more components
• Ex: Interface for plotting reference, test, and diff data
• plot(reference, test, difference)

• Finish implementing E3SM Diagnostics, ARM Diagnostics, expand on PCMDI
Metrics Package

